Mr. John Jang Regional Water Quality Control Board (RWQCB) San Francisco Bay Region 1515 Clay Street, Suite 1400 Oakland, CA 94612

Re:

Subsurface Investigation Report Chevron Service Station 9-4737

90 Madera Boulevard Corte Madera, California UST File No. 21-0034 (JMJ)

Dear Mr. Jang:

On behalf of Chevron Environmental Management Company (ChevronTexaco), Cambria Environmental Technology, Inc. (Cambria) is submitting this Subsurface Investigation Report for the site referenced above. Cambria installed monitoring well MW-4 to further evaluate the extent of diesel hydrocarbons and methyl tertiary butyl ether (MTBE) in soil and groundwater. The work was performed in accordance with Cambria's Workplan for Monitoring Well Installation and Well Destruction, dated September 28, 2004, as approved by the RWQCB in a letter dated January 12, 2005 (Attachment A.) The site background, details of the investigation, and our conclusions and recommendations are presented below.

SITE BACKGROUND

The site is an active service station located in the northeast corner of the Town Center Corte Madera at 90 Madera Boulevard in Corte Madera, California (Figure 1). Land use in the area is mixed commercial and residential. The site is bordered to the south and west by the Town Center Corte Madera parking lot and to the east by Highway 101. The current site configuration consists of a station building, six fuel dispensers, one diesel UST, three gasoline USTs, and associated product piping (Figure 2). An accidental release of diesel fuel occurred on February 4, 1991. This initiated the installation of three monitoring wells.

Cambria Environmental Technology, Inc.

4111 Citrus Avenue Suite 9 Rocklin, CA 95677 Tel (916) 630-1855 Fax (916) 630-1856

Previous Investigations

Used-Oil UST Replacement: In December 1990, a 550 gallon used-oil UST was removed from the site and a new used-oil tank was installed in a new location. Concentrations up to 150 mg/kg total petroleum hydrocarbons as gasoline (TPHg), and 366 mg/kg total petroleum hydrocarbons as diesel (TPHd) were reported in soil collected during UST removal. On January 10, 1991, approximately 30 cubic yards (cy) of soil were removed from the used-oil UST basin. Details are presented in Sierra Environmental Services (SES) tank removal letter, dated January 29, 1991.

Soil Excavation, Monitoring Well Installation, and Well Survey: On February 6, 1991, SES collected soil samples from the sidewalls of the renovated fuel UST basin following an accidental release of diesel. Concentrations up to 43mg/kg TPHd was reported in the soil samples. On February 11, 1991, SES collected grab-groundwater samples from the UST excavation. Hydrocarbon concentrations up to 32,000 μg/L TPHg, 410,000 μg/L TPHd, and 2,000 μg/L benzene were reported in the groundwater samples. Approximately 80 cy of soil were excavated from the perimeter of the UST basin after 20,000 gallons of water and diesel were pumped from the tank pit. On February 27, 1991, SES installed groundwater monitoring wells MW-1, MW-2, and MW-3. A water supply well survey was also performed. Three wells were identified within a half mile radius of the site. None of these wells are down-gradient of the site. Details are presented in SES's Subsurface Investigation report, dated May, 13, 1991.

Monitoring Well Installation: In November 1995, Earth Technology installed an offsite, downgradient groundwater monitoring well (ACMW-1) to 30.50 feet below grade (fbg) for additional plume delineation.

Used-oil UST Removal: In November 1997, Touchstone Developments Environmental Management removed a 1,000 gallon single-walled fiberglass used-oil UST. A soil sample collected from 8 fbg in the UST basin after tank removal contained 64 mg/kg oil and grease. No TPHg or benzene was reported. Unidentified hydrocarbons in the diesel range were reported at 5.5 mg/kg. Details are presented in Touchstone Developments Used-Oil Tank Removal and Sampling Report, dated November 20, 1997.

HYDROGEOLOGY/SOIL LITHOLOGY

Measured depth to water below the site has historically ranged between 2.39 and 7.99 fbg. Groundwater beneath the site typically flows south-southwest. The nearest surface water bodies are a tidal creek approximately 1,600 feet east of the site, and Richardson Bay approximately 4,200 feet east of the site.

The site is located in the Coast Range geomorphic province, comprised of sedimentary and metamorphic rocks with local exposures of rocks from the Franciscan complex. The site is underlain by artificial fill and bay mud.

INVESTIGATION RESULTS

The objective of this investigation was to further evaluate the down-gradient definition of the extent of diesel hydrocarbons and MTBE in soil and groundwater. To meet this objective, Cambria installed monitoring well MW-4 down-gradient of the USTs. The results of Cambria's March 8, 2005 subsurface investigation are summarized below. Analytical results of the soil are summarized in Table 1. Analytical results of groundwater are summarized in Table 2. The drilling permit is included in Attachment B. The boring logs are presented as Attachment C. The analytical reports of soil and groundwater samples for the investigation are presented as Attachment D. Cambria's Standard Field Procedures are presented as Attachment E.

Soil Borings

Permits: County of Marin Community Development Agency permit

number MW 04/05 - 11(1) is included in Attachment B.

Drilling Dates: MW-4 was advanced on March 8, 2005.

Drilling Company: Gregg Drilling, Inc. of Martinez, CA (C-57 Lic. # 485165).

Sampling Personnel: Staff Scientist Kiersten Hoey conducted all fieldwork under the

supervision of California Professional Geologist David W.

Herzog (P.G. #7211).

Drilling Method:

The first 8 feet of the boring was cleared using an air-knife/vacuum rig to ensure no subsurface utilities would be encountered. Below 8 feet, boring MW-4 was drilled to a total depth of 20 fbg. The boring was drilled using 8-inch hollow-stem augers.

Soil Sampling:

Soil samples were collected every five feet, beginning at 5 fbg. The 5 fbg sample was collected by driving a 2-inch diameter brass tube into disturbed sediments. Samples between 10 and 20 fbg were collected by driving an 18-inch-long split-spoon sampler lined with 2-inch-diameter brass tubes into undisturbed sediments. Table 1 lists the soil analytical data.

Soil Screening:

Soil samples were screened using a photo-ionization detector (PID). Samples were selected for analyses based on PID readings, evidence of discoloration, stratigraphic location, and depth to groundwater.

Encountered Lithology:

Lithology encountered in the boring consisted of fill to approximately 4.5 fbg, underlain by silty clay to approximately 20 fbg (total depth explored).

Laboratory Analyses:

Selected soil samples were analyzed by Lancaster Laboratories for:

- TPHg by N. CA LUFT Gasoline method;
- TPHd by CALUFT-DRO/8015B using silica gel clean-up;
 and
- Benzene, toluene, ethyl-benzene, xylenes (BTEX), MTBE, di-Isopropyl ether (DIPE), Ethyl tertiary butyl ether (ETBA), Tertiary amyl methyl ether (TAME), Tertiary butyl alcohol (TBA), 1,2-Dichloroethane (1,2-DCA), and 1,2-Dibromoethane (EDB) by EPA Method 8260B

Soil Disposal:

Soil cuttings were stored in drums on-site, removed by Integrated Waste Management and transported to Republic Services Vasco Road Landfill in Livermore, California.

Well Construction

Well Materials:

Well MW-4 was constructed with two-inch diameter, schedule 40 PVC pipe casing and 0.010-inch screen, Monterey Sand #2/16 filter pack, a 1-foot bentonite seal above the screen and sand pack and filled with neat Portland cement to grade.

Screened Interval: The screen interval for well MW-4 is 5 to 20 fbg.

Depth to Groundwater: Groundwater was encountered at approximately 6 fbg.

Well Development: Gettler-Ryan, Inc. developed well MW-4 on March 18, 2004 using surge-block agitation and bailer evacuation.

Groundwater Sampling: Groundwater samples were collected from well MW-4, and wells MW-1, MW-2, MW-2, and ACMW-1 on March 18, 2005 (Attachment D).

Groundwater Analyses: Groundwater samples was analyzed for:

- TPHg by N. CA LUFT Gasoline Method;
- TPHd by Modified CALUFT-DRO/8015B with silica gel cleanup; and
- BTEX, and fuel oxygenates: MTBE, TBA, DIPE, TAME, ETBE, and lead scavengers 1,2-DCA and EDB by EPA Method 8260B

Top-of-Casing Elevations:

On March 29, 2005, Licensed Land Surveyor Morrow Surveying (#LS5161) surveyed the top-of-casing for wells MW-1 through MW-4 and ACMW-1. The well survey data are provided in Attachment F.

HYDROCARBONS IN SOIL

No TPHg, benzene, or ethylbenzene was reported in any sample. TPHd was only reported in the soil sample collected from 5 fbg at 17 mg/kg. Xylenes and toluene were also reported in the 5 fbg sample at 0.002 mg/kg each. No oxygenates or lead scavengers were detected, except 0.0009 mg/kg MTBE at 15 fbg was reported in the soil samples. The vertical extent of hydrocarbons in soil is defined in well MW-4. The lateral extent of TPHd and MTBE in downgradient soil is essentially defined to concentrations just above the laboratory detection limits by MW-4. Analytical results for soil are presented in Table 1. The laboratory analytical report for soil is presented as Attachment D.

HYDROCARBONS IN GROUNDWATER

Monitoring well MW-4 was installed down-gradient of the source area. Groundwater samples were collected from all site wells and analyzed for TPHd, TPHg, BTEX, 1,2-DCA, EDB, ethanol, and five oxygenates. TPHd was reported in all wells. The highest concentration of TPHd was reported in MW-3 at 930 μ g/L. TPHg and benzene were reported only in MW-2 at 670 μ g/L and 1 μ g/L, respectively. MTBE was reported in MW-2, MW-3, and MW-4 at 36 μ g/L, 150 μ g/L, and 1 μ g/L, respectively. TAME and TBA were also reported in MW-2 and MW-3. TPHg and benzene appear limited to the groundwater beneath the source area and have not migrated off-site. MTBE appears essentially defined up-, cross-, and down-gradient of the source area. Analytical results for groundwater samples are presented in Table 2. The laboratory analytical report for groundwater is presented as Attachment D.

CONCLUSIONS AND RECOMMENDATIONS

The vertical extent of hydrocarbons in soil is defined by monitoring well MW-4. Lateral extent of TPHd and MTBE in down-gradient soil is essentially defined to concentrations just above the laboratory detection limits by MW-4. TPHg and benzene appear limited to the groundwater beneath the source area and have not migrated off-site. MTBE appears essentially defined in all directions. Continued groundwater monitoring is necessary to evaluate diesel range hydrocarbon

attenuation. Therefore, Cambria recommends continued monitoring and sampling of wells MW-1 through MW-4 and ACMW-1. Cambria will recommend case closure for this site if diesel concentrations continue to decrease. Destruction of wells MW-1 through MW-3 as proposed in Cambria's September 28, 2004 workplan has been postponed pending finalization of site redevelopment plans by ChevronTexaco.

CLOSING

Please contact Kiersten Hoey (ext. 105) at (916) 630-1855 with any questions or if you require additional information.

Sincerely,

Cambria Environmental Technology, Inc.

Kiersten Hoey Staff Scientist

David W. Herzog P.G. #7211 Senior Project Geologist

Figures:

1 - Vicinity Map

2 - Site Plan

Tables:

1 - Soil Analytical Data

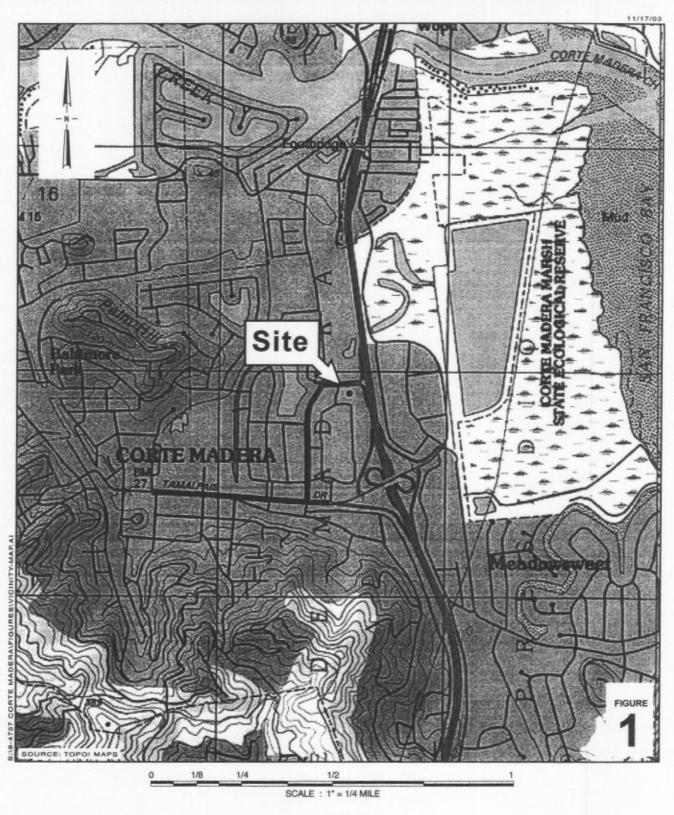
2 - Groundwater Analytical Data

Attachments:

A - Regulatory Correspondence

B – Drilling Permit C – Boring Log

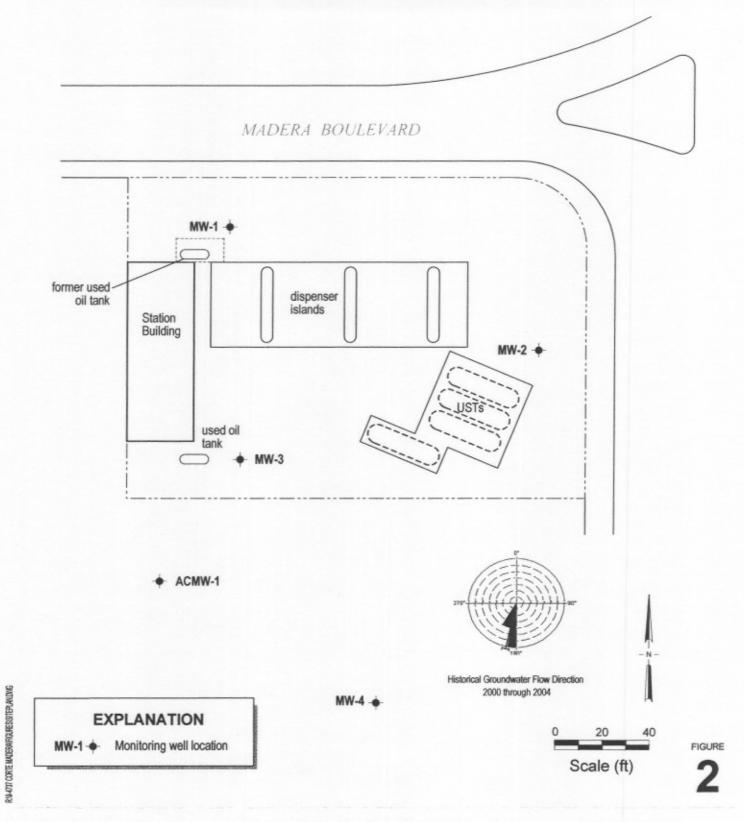
D - Laboratory Analytic Reports


E - Standard Field Procedures for Borings and Wells.

F - Well Survey Data

- cc: Mr. Dana Thurman, Chevron Environmental Management Company, PO Box 6012, Room K2236 San Ramon, California 94583
 - Mr. Tomothy Underwood, Marin County Department of Public Works, Office of waste Management, P.O. Box 4186, San Rafael, CA 94913
 - Mr. Stan Hoffman, Madison-Marquette Managmenet Co., 100 Corte Madera Town Center, Corte Madera, CA 94925
 - Ms. Kathleen Burgi-Sandell, Lend-Lease, 1 Front St, Suite 1100, San Francisco, CA 94111.

Cambria Environmental Technology, Inc.


Chevron Service Station 9-4737

Vicinity Map

90 Madera Boulevard Corte Madera, California

CAMBRIA

Chevron Service Station 9-4737

90 Madera Boulevard Corte Madera, California

CAMBRIA

Site Plan

Table 1
Analytical Results for Soil

Chevron Station #9-4737, 90 Corte Madera Blvd, Corte Madera, CA

Sample ID	Depth	Date	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB	Total Lead
	(fbg)							((Concentratio	ns in mg/k	g)					
MW-4	5	3/8/2005	17*	<1.0	< 0.0005	0.002	< 0.001	0.002	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.020	< 0.001	< 0.001	
	10	3/8/2005	<10*	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.020	< 0.001	< 0.001	
	15	3/8/2005	<10*	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	0.0009	< 0.001	< 0.001	< 0.001	< 0.020	< 0.001	< 0.001	-
	20	3/8/2005	<10*	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.020	< 0.001	< 0.001	
SP		3/8/2005	<10	<1.0	< 0.005	< 0.005	< 0.005	< 0.02	< 0.05							5.37

Abbreviations/Notes

TPHg = total petroeum hydrocarbons as gas

TPHd = total petroleum hydrocarbons as deisel

MTBE = methyl tertiary butyl ether

DIPE = di-isopropyl ether

ETBE = ethyl tertiary butyl ether

TAME = tertiary amyl methyl ether

TBA = tertiary butyl ether

1,2-DCA = 1,2-dichloroethane

EDB = 1,2-dibromoethane

 $<_{X,XX} = not$ detected above laboratory detection limit

"-" - not analyzed

SP = Composite Sample

Cambria

Table 2
Analytical Results for Groundwater

Chevron Station #9-4737, 90 Corte Madera Blvd, Corte Madera, CA

Sample ID	Date	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB	Ethanol
							(Concentrations in ug/L)								
MW-1	3/18/2005	360*	<50	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<5	<0.5	<0.5	<50
MW-2	3/18/2005	410*	670	1	< 0.5	2	0.5	36	< 0.5	<0.5	4	6	< 0.5	< 0.5	<50
MW-3	3/18/2005	930*	<50	< 0.5	<0.5	<0.5	<0.5	150	<0.5	< 0.5	7	260	<0.5	< 0.5	<50
MW-4 ^[1]	3/18/2005	210*	<50	<0.5	0.5	< 0.5	<0.5	1	<0.5	<0.5	<0.5	<5	< 0.5	<0.5	<50
ACMW-1	3/18/2005	100*	<50	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5	<5	<0.5	< 0.5	<50
QA	3/18/2005		<50	<0.5	< 0.5	< 0.5	< 0.5	< 0.5			-		-	-	-

Abbreviations/Notes

TPHd = total petroleum hydrocarbons as diesel

TPHg = total petroeum hydrocarbons as gas

MTBE = methyl tertiary butyl ether

DIPE = di-Isopropyl ether

ETBE = ethyl tertiary butyl ether

TAME = tertiary amyl methyl ether

TBA = tertiary butyl ehter

1,2-DCA = 1,2-dichloroethane

EDB = 1,2-dibromoethane

<x.xx = not detected above the detection limit

ug/L = micrograms per liter

[&]quot;-" = not analyzed

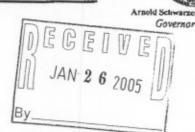
^{* =} with silica gel cleanup

^{[1] =} Sample submitted for volatile analysis did not have a pH<2, but a pH=7. Although the sample does not appear properly preserved, it was analyzed within seven days of collection, which is within the holding time of an unpreserved sar

9

A TNAMHOATTA

Regulatory Correspondence



California

egional Water Quality Control Board

San Francisco Bay Region

Dr. Alan Lloyd Secretary for Environmental Protection 1515 Clay Street, Suite 1400, Oakland, California 94612 (510) 622-2300 • Fax (510) 622-2460 http://www.waterboards.ca.gov/sanfranciscobay

Chevron Environmental Management Co. Attn: Ms. Karen Streich P. O. Box 6012 San Ramon, CA 94583

January 12, 2005 UST File No. 21-0034 (JMJ)

Dear Ms. Streich:

SUBJECT:

Approval of "Workplan for Monitoring Well Installation and Well Destruction" dated September 28, 2004, and Requirement for a Technical Report for Chevron

Station 9-4737, 90 Madera Blvd., Corte Madera, Marin County

Regional Board staff has reviewed the subject workplan dated September 28, 2004. This workplan proposes to destroy the three on-site monitoring wells during the second quarter of 2005 to facilitate site reconstruction. The reconstruction includes replacement of the USTs, dispenser islands, canopies, and convenience store. The workplan also propose to install one off-site downgradient monitoring well. You are hereby granted approval for the implementation of the workplan.

As the current owner and/or operator of the subject site, you are required to submit a technical report pursuant to Section 13267 of the California Water Code. The required technical report is due in this office by April 10, 2005, and shall consist of a report documenting the installation of the monitoring well proposed in the September 28, 2004, workplan. Failure to respond or a late response to this request may subject you to civil liability imposed by the Water Board to a maximum amount of \$1000 per day. Any extensions of the time deadlines set forth above must be confirmed in writing by Board staff.

Please include the Regional Board file number shown in the heading of this letter. All workplans, reports, and correspondence must be submitted to this Water Board with a copy sent to Mr. Tim Underwood of the Marin County of Waste Management.

Please direct all questions and correspondence regarding this matter to John Jang of my staff at (510) 622-2366 (email address jiang@waterboards.ca.gov).

Post-it Fax Note 7671 Date 1/26/05 pages 1

To Down & (fertra From John Jany
Cordept. Cambria On Revoca #L

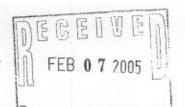
Phone # Phone # 500 cm-2366

Fax #966 - 638 - 1856 Fax #

Sincerely,

Bruce H. Wolfe

Executive Officer



ATTACHMENT B

Drilling Permit

COUNTY OF MARIN COMMUNITY DEVELOPMENT AGENCY

PERMIT TO INSTALL MONITORING WELLS

Date of Issuance: February 2, 2005 Date of Expiration: February 2, 2006

To: Chevron Environmental Management PO Box 6012

San Ramon, CA 94583

Environmental Health Services 3501 Civic Center Drive, Rm 236 San Rafael, CA 94903 (415) 499-6907 FAX (415) 507-4120

Permit No.: MW 04/05 - 11 (1)

Street Address: 90 Corte Madera Town Center

City: Corte Madera

Assessor's Parcel No: 024-163-01

Driller: Gregg Drilling, Inc. 950 Howe Road, Martinez, CA 94553

Permission is hereby granted to construct one (1) monitoring well(s) at the above, indicated site.

In order to provide the necessary inspections, the well driller shall notify this office at (415) 499-6907 at least **two working days** in advance of drilling the well. Also, contact Environmental Health on the day of the work. The annular seal shall not be placed until approval from Environmental Health Service is granted.

CONDITIONS:

- 1. This permit is not valid in the Coastal Zones until a Coastal permit is first obtained.
- 2. This permit is not valid until local encroachment permits are first obtained. Please contact appropriate city, park or special district agencies for more information.
- 3. Install sanitary seals with a minimum depth of five feet.

Well construction shall meet the requirements of the current State of California Well Standards Bulletin 74-90 (as revised) and the CCR Title 26. The well driller shall submit a Department of Water Resources Form 188 (Water Well Drillers Report) within 30 days of project completion.

Marin County Office of Waste Management must be notified prior to drilling well.

Scott Callow, Senior R.E.H.S.

Cambria Env. Tech, 4111 Citrus Ave #12, Rocklin, CA 95677
 Marin County Waste Management
 Town of Corte Madera

OFF	CE	USE	ONLY	
		7		

1.			
_			
2.			

3. _____

ATTACHMENT C

Boring Log

Cambria Environmental Technology, Inc. 2680 Bishop Drive, Suite 290 San Ramon, CA 94583 Telephone: (925) 275-3200 Fax: (925) 275-3204

CLIENT NAME	Chevron Products Company	BORING/WELL NAME MW-4		
JOB/SITE NAME	9-4737	DRILLING STARTED 08-Mar-05		
LOCATION	90 Corte Madera Town Center	DRILLING COMPLETED 08-Mar-05		
PROJECT NUMBER _	61H-1669	WELL DEVELOPMENT DATE (YIELD)	NA	
DRILLER _	Gregg Drilling	GROUND SURFACE ELEVATION		
DRILLING METHOD _	Hollow-stem auger	TOP OF CASING ELEVATION NA		
BORING DIAMETER	8-inches	SCREENED INTERVAL 5 to 20 ft	bgs	
LOGGED BY	K. Hoey	DEPTH TO WATER (First Encountered)	5.5 ft (08-Mar-05)	∇
REVIEWED BY	D. Herzog P.G. #7211	DEPTH TO WATER (Static)	6.3 ft (18-Mar-05)	Ā
DEMARKS	Boring cleared to 8 fbg with air knife and	hand auger		

CONTACT DEPTH (ft bgs) TPHg (ppm) SAMPLE ID GRAPHIC BLOW PID (ppm) EXTENT U.S.C.S. (ft bgs) LITHOLOGIC DESCRIPTION WELL DIAGRAM Asphalt Fill: 0.5 Portland Type 1/11 2" diam., Schedule 40 PVC 4.5 Bentonite Seal Silty CLAY with Gravel: Soft; Blackish Grey with green gravel; moist; 70% clay, 20% silt, 10% gravel; moderate to high plasticity; moderate to low estimated permeability. MW-4@ 0 5 OH 8.0 Silty CLAY: Soft; Dark Grey; wet; 60% clay, 40% silt; moderate plasticity; low estimated permeability. 0 MW-46 10 ✓ Monterey
✓ Sand #2/16
2"-diam.,
0.010" Slotted OL Schedule 40 PVC 0 MW-46 15 20.0 0 Bottom of Boring @ 20 ft 20 WELL LOG (PID/TPHG) R:9-4737~1/MARCH2~1.GPJ DEFAULT.GDT 4/6/05 20 PAGE 1 OF 1

ATTACHMENT D

Laboratory Analytic Reports

2425 New Holland Pike, PO Box 12425, Lancester, PA 17605-2425 *717-656-2300 Fax: 717-656-2681 * www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

ChevronTexaco C/O Cambria 4111 Citrus Avenue Suite 9 Rocklin CA 95677 916-630-1855

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 934860. Samples arrived at the laboratory on Thursday, March 10, 2005. The PO# for this group is 99011184 and the release number is THURMAN.

Client Description			Lancaster Labs Number
MW-4-S-5-050308	Grab	Soil	4479187
MW-4-S-10-050308	Grab	Soil	4479188
MW-4-S-15-050308	Grab	Soil	4479189
MW-4-S-20-050308	Grab	Soil	4479190

1 COPY TO

Cambria Environmental

Attn: Jami Shaffer

2425 New Holland Pike, PO Box 12425, Langaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.langasterlabs.com

Questions? Contact your Client Services Representative Angela M Miller at (717) 656-2300.

Respectfully Submitted,

Robin C. Runkle Senior Chemist

Robin Churchele

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 * 717-656-2300 Fax; 717-656-2681 * www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW 4479187

MW-4-S-5-050308 Grab Facility# 94737 MTI# 61H-1669 Grab

90 Corte Madera-Corte Mad T0604100033 MW-4 Collected: 03/08/2005 12:30 by KH

Submitted: 03/10/2005 09:10 Reported: 03/18/2005 at 12:27 Discard: 04/18/2005

Account Number: 10880

ChevronTexaco C/O Cambria

4111 Citrus Avenue

Suite 9

CETR

Rocklin CA 95677

M		

					As Received		
CAT				As Received	Method		Dilution
No.	Analysis Name		CAS Number	Result	Detection Limit	Units	Factor
01725	TPH-GRO - Soils		n.a.	N.D.	1.0	mg/kg	25
	The analysis for vola in methanol. The rep The reported concentr gasoline constituents start time.	orting lim ation of T eluting p	its were adjus PH-GRO does no rior to the C6	sted appropriatel ot include MTBE of (n-hexane) TPH-	y. or other GRO range		
02201	TPH-DRO CALUFT (Soils)	w/Si Gel	n.a.	17.	10.	mg/kg	1
07361	BTEX+5 Oxygenates+EDC	+EDB					
02016	Methyl Tertiary Butyl	Ether	1634-04-4	N.D.	0.0005	mg/kg	1
02017	di-Isopropyl ether		108-20-3	N.D.	0.001	mg/kg	1
02018	Ethyl t-butyl ether		637-92-3	N.D.	0.001	mg/kg	1
02019	t-Amyl methyl ether		994-05-8	N.D.	0.001	mg/kg	1
02020	t-Butyl alcohol		75-65-0	N.D.	0.020	mg/kg	1
05460	Benzene		71-43-2	N.D.	0.0005	mg/kg	1
05461	1,2-Dichloroethane		107-06-2	N.D.	0.001	mg/kg	1
05466	Toluene		108-88-3	0.002	0.001	mg/kg	1
05471	1,2-Dibromoethane		106-93-4	N.D.	0.001	mg/kg	1
05474	Ethylbenzene		100-41-4	N.D.	0.001	mg/kg	1
06301	Xylene (Total)		1330-20-7	0.002	0.001	mg/kg	1

CAT		Laboratory	Chro	nicle Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01725	TPH-GRO - Soils	N. CA LUFT Gasoline method	1	03/14/2005 15:43	Martha L Seidel	25
02201	TPH-DRO CALUFT(Soils) w/Si Gel	CALUFT-DRO/8015B, Modified	1	03/16/2005 20:05	Sarah M Snyder	1
07361	BTEX+5 Oxygenates+EDC+EDB	SW-846 8260B	1	03/14/2005 05:37	Anastasia Papadoplos	1
00374	GC/MS - Bulk Sample Prep	SW-846 5030A	1	03/14/2005 02:14	Anastasia Papadoplos	n.a.
01150	GC - Bulk Soil Prep	SW-846 5035	1	03/11/2005 15:56	Eric L Vera	n.a.
07024	DRO Alternate Soil Extraction	TPH by CA LUFT	1	03/15/2005 14:45	Jason A Heisey	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW 4479188

MW-4-S-10-050308 Grab Soil Facility# 94737 MTI# 61H-1669

90 Corte Madera-Corte Mad T0604100033 MW-4

Collected:03/08/2005 13:03 by KH

Submitted: 03/10/2005 09:10 Reported: 03/18/2005 at 12:27

Discard: 04/18/2005

Extraction

Account Number: 10880

ChevronTexaco C/O Cambria

4111 Citrus Avenue

Suite 9

CETR

Rocklin CA 95677

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01725	TPH-GRO - Soils	n.a.	N.D.	1.0	mg/kg	25
	The analysis for volatiles was in methanol. The reporting li The reported concentration of gasoline constituents eluting start time. A poor surrogate recovery was poor surrogate recovery was ag effect.	mits were adjust TPH-GRO does not prior to the Co observed. The	sted appropriatel ot include MTBE of (n-hexane) TPH- analysis was rep	y. or other GRO range seated and a		
02201	TPH-DRO CALUFT(Soils) w/Si Gel	n.a.	N.D.	10.	mg/kg	1
07361	BTEX+5 Oxygenates+EDC+EDB					
02016	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0005	mg/kg	1.01
02017	di-Isopropyl ether	108-20-3	N.D.	0.001	mg/kg	1.01
02018	Ethyl t-butyl ether	637-92-3	N.D.	0.001	mg/kg	1.01
02019	t-Amyl methyl ether	994-05-8	N.D.	0.001	mg/kg	1.01
02020	t-Butyl alcohol	75-65-0	N.D.	0.020	mg/kg	1.01
05460	Benzene	71-43-2	N.D.	0.0005	mg/kg	1.01
05461	1,2-Dichloroethane	107-06-2	N.D.	0.001	mg/kg	1.01
05466	Toluene	108-88-3	N.D.	0.001	mg/kg	1.01
05471	1,2-Dibromoethane	106-93-4	N.D.	0.001	mg/kg	1.01
05474	Ethylbenzene	100-41-4	N.D.	0.001	mg/kg	1.01
06301	Xylene (Total)	1330-20-7	N.D.	0.001	mg/kg	1.01

CAT		Laboratory	Chro	nicle Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01725	TPH-GRO - Soils	N. CA LUFT Gasoline method	1	03/14/2005 16:29	Martha L Seidel	25
02201	TPH-DRO CALUFT(Soils) w/Si Gel	CALUFT-DRO/8015B, Modified	1	03/16/2005 13:21	Sarah M Snyder	1
07361	BTEX+5 Oxygenates+EDC+EDB	SW-846 8260B	1	03/14/2005 05:59	Anastasia Papadoplos	1.01
00374	GC/MS - Bulk Sample Prep	SW-846 5030A	1	03/14/2005 02:16	Anastasia Papadoplos	n.a.
01150	GC - Bulk Soil Prep	SW-846 5035	1	03/11/2005 16:00	Eric L Vera	n.a.
07024	DRO Alternate Soil	TPH by CA LUFT	1	03/15/2005 14:45	Jason A Heisey	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW 4479189

MW-4-S-15-050308

Facility# 94737 MTI# 61H-1669 CETR

90 Corte Madera-Corte Mad T0604100033 MW-4

Collected: 03/08/2005 13:10 by KH

Submitted: 03/10/2005 09:10 Reported: 03/18/2005 at 12:28

Discard: 04/18/2005

Account Number: 10880

ChevronTexaco C/O Cambria

4111 Citrus Avenue

Suite 9

Rocklin CA 95677

M		

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01725	TPH-GRO - Soils	n.a.	N.D.	1.0	mg/kg	25
	The analysis for volati in methanol. The report The reported concentrat gasoline constituents e start time.	ting limits were adju ion of TPH-GRO does n	sted appropriate ot include MTBE	ly. or other		
02201	TPH-DRO CALUFT(Soils) w	/Si Gel n.a.	N.D.	10.	mg/kg	1
07361	BTEX+5 Oxygenates+EDC+E	DB				
02016	Methyl Tertiary Butyl E	ther 1634-04-4	0.0009	0.0005	mg/kg	1
02017	di-Isopropyl ether	108-20-3	N.D.	0.001	mg/kg	1
02018	Ethyl t-butyl ether	637-92-3	N.D.	0.001	mg/kg	1
02019	t-Amyl methyl ether	994-05-8	N.D.	0.001	mg/kg	1
02020	t-Butyl alcohol	75-65-0	N.D.	0.020	mg/kg	1
05460	Benzene	71-43-2	N.D.	0.0005	mg/kg	1
05461	1,2-Dichloroethane	107-06-2	N.D.	0.001	mg/kg	1
05466	Toluene	108-88-3	N.D.	0.001	mg/kg	1
05471	1,2-Dibromoethane	106-93-4	N.D.	0.001	mg/kg	1
05474	Ethylbenzene	100-41-4	N.D.	0.001	mg/kg	1
06301	Xylene (Total)	1330-20-7	N.D.	0.001	mg/kg	1

CAT		Laboratory	Chro	nicle Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01725	TPH-GRO - Soils	N. CA LUFT Gasoline method	1	03/14/2005 17:15	Martha L Seidel	25
02201	TPH-DRO CALUFT(Soils) w/Si Gel	CALUFT-DRO/8015B, Modified	1	03/16/2005 13:44	Sarah M Snyder	1
07361	BTEX+5 Oxygenates+EDC+EDB	SW-846 8260B	1	03/14/2005 08:38	Anastasia Papadoplos	1
00374	GC/MS - Bulk Sample Prep	SW-846 5030A	1	03/14/2005 02:18	Anastasia Papadoplos	n.a.
01150	GC - Bulk Soil Prep	SW-846 5035	1	03/11/2005 16:07	Eric L Vera	n.a.
07024	DRO Alternate Soil Extraction	TPH by CA LUFT	1	03/15/2005 14:45	Jason A Heisey	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. SW 4479190

MW-4-S-20-050308 Grab Soil Facility# 94737 MTI# 61H-1669 CETR

90 Corte Madera-Corte Mad T0604100033 MW-4 Collected:03/08/2005 13:13 by KH

Submitted: 03/10/2005 09:10 Reported: 03/18/2005 at 12:28

Discard: 04/18/2005

Account Number: 10880

ChevronTexaco C/O Cambria 4111 Citrus Avenue

Suite 9

Rocklin CA 95677

CMC20

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01725	TPH-GRO - Soils	n.a.	N.D.	1.0	mg/kg	25
	The analysis for volatiles was in methanol. The reporting li The reported concentration of gasoline constituents eluting start time.	mits were adjus. TPH-GRO does no	sted appropriatel ot include MTBE o	y. or other		
02201	TPH-DRO CALUFT(Soils) w/Si Gel	n.a.	N.D.	10.	mg/kg	1
07361	BTEX+5 Oxygenates+EDC+EDB					
02016	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.0005	mg/kg	1
02017	di-Isopropyl ether	108-20-3	N.D.	0.001	mg/kg	1
02018	Ethyl t-butyl ether	637-92-3	N.D.	0.001	mg/kg	1
02019	t-Amyl methyl ether	994-05-8	N.D.	0.001	mg/kg	1
02020	t-Butyl alcohol	75-65-0	N.D.	0.020	mg/kg	1
05460	Benzene	71-43-2	N.D.	0.0005	mg/kg	1
05461	1,2-Dichloroethane	107-06-2	N.D.	0.001	mg/kg	1
05466	Toluene	108-88-3	N.D.	0.001	mg/kg	1
05471	1,2-Dibromoethane	106-93-4	N.D.	0.001	mg/kg	1
05474	Ethylbenzene	100-41-4	N.D.	0.001	mg/kg	1
06301	Xylene (Total)	1330-20-7	N.D.	0.001	mg/kg	1

		Laboratory	Chro	nicle		
CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01725	TPH-GRO - Soils	N. CA LUFT Gasoline method	1	03/14/2005 18:01	Martha L Seidel	25
02201	TPH-DRO CALUFT(Soils) w/Si Gel	CALUFT-DRO/8015B, Modified	1	03/16/2005 14:06	Sarah M Snyder	1
07361	BTEX+5 Oxygenates+EDC+EDB	SW-846 8260B	1	03/14/2005 09:00	Anastasia Papadoplos	1
00374	GC/MS - Bulk Sample Prep	SW-846 5030A	1	03/14/2005 02:20	Anastasia Papadoplos	n.a.
01150	GC - Bulk Soil Prep	SW-846 5035	1	03/11/2005 16:14	Eric L Vera	n.a.
07024	DRO Alternate Soil Extraction	TPH by CA LUFT	1	03/15/2005 14:45	Jason A Heisey	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: ChevronTexaco C/O Cambria Reported: 03/18/05 at 12:28 PM

Group Number: 934860

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the

Laboratory Compliance Quality Control

				· · · · · · · · · · · · · · · · · · ·			
Blank Result	Blank MDL	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Sample	number(s):	4479187-44	79190				
N.D.	1.0	mg/kg	77		67-119		
Sample	number(s):	4479187-44	79190				
N.D.	10.	mg/kg	97		61-130		
Sample	number(s):	4479187-44	79190				
N.D.	0.5	ug/kg	97		75-125		
N.D.	1.	ug/kg	93		70-129		
N.D.	1.	ug/kg	91		71-124		
N.D.	1.	ug/kg	93		63-129		
N.D.	20.	ug/kg	97		51-160		
N.D.	0.5	ug/kg	102		77-119		
N.D.	1.	ug/kg	101		76-126		
N.D.	1.	ug/kg	104		81-116		
N.D.	1.	ug/kg	103		77-114		
N.D.	1.	ug/kg	104		82-115		
N.D.	1.	ug/kg	106		82-117		
	Result Sample N.D. Sample N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	Result MDL Sample number(s): N.D. 1.0 Sample number(s): N.D. 10. Sample number(s): N.D. 0.5 N.D. 1. N.D. 1. N.D. 1. N.D. 1. N.D. 1. N.D. 20. N.D. 0.5 N.D. 1.	Result MDL Units Sample number(s): 4479187-44 N.D. 1.0 mg/kg Sample number(s): 4479187-44 N.D. 10. mg/kg Sample number(s): 4479187-44 N.D. 1. ug/kg N.D. 1. ug/kg N.D. 1. ug/kg N.D. 20. ug/kg N.D. 1. ug/kg	Result MDL Units %REC Sample number(s): 4479187-4479190 77 Sample number(s): 4479187-4479190 77 Sample number(s): 4479187-4479190 97 Sample number(s): 4479187-4479190 97 N.D. 1. ug/kg 97 N.D. 1. ug/kg 93 N.D. 1. ug/kg 91 N.D. 1. ug/kg 97 N.D. 0.5 ug/kg 102 N.D. 1. ug/kg 101 N.D. 1. ug/kg 101 N.D. 1. ug/kg 103 N.D. 1. ug/kg 103 N.D. 1. ug/kg 104	Result MDL Units %REC %REC Sample number(s): 4479187-4479190 77 Sample number(s): 4479187-4479190 97 Sample number(s): 4479187-4479190 97 N.D. 0.5 ug/kg 97 N.D. 1. ug/kg 93 N.D. 1. ug/kg 91 N.D. 1. ug/kg 97 N.D. 20. ug/kg 97 N.D. 0.5 ug/kg 102 N.D. 1. ug/kg 101 N.D. 1. ug/kg 104 N.D. 1. ug/kg 103 N.D. 1. ug/kg 104	Result MDL Units %REC %REC Limits Sample number(s): 4479187-4479190 67-119 N.D. 1.0 mg/kg 77 67-119 Sample number(s): 4479187-4479190 61-130 N.D. 1. ug/kg 97 75-125 N.D. 1. ug/kg 93 70-129 N.D. 1. ug/kg 91 71-124 N.D. 1. ug/kg 93 63-129 N.D. 2. ug/kg 97 51-160 N.D. 0.5 ug/kg 102 77-119 N.D. 1. ug/kg 101 76-126 N.D. 1. ug/kg 104 81-116 N.D. 1. ug/kg 103 77-114 N.D. 1. ug/kg 104 82-115	Result MDL Units %REC %REC Limits RPD Sample number(s): 4479187-4479190 67-119 N.D. 1.0 mg/kg 97 61-130 Sample number(s): 4479187-4479190 75-125 75-125 N.D. 0.5 ug/kg 97 75-125 N.D. 1. ug/kg 93 70-129 N.D. 1. ug/kg 91 71-124 N.D. 1. ug/kg 93 63-129 N.D. 2. ug/kg 97 51-160 N.D. 0.5 ug/kg 102 77-119 N.D. 1. ug/kg 101 76-126 N.D. 1. ug/kg 104 81-116 N.D. 1. ug/kg 103 77-114 N.D. 1. ug/kg 104 82-115

Sample Matrix Quality Control

		-		-		-			
Analysis Name	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD MAX	BKG Conc	DUP Conc	DUP RPD	Dup RPD
Batch number: 05071A02B	Sample	number	(s): 44791	87-4479	190				
TPH-GRO - Soils	65	62	39-118	4	30				
Batch number: 050740007A	Sample	number	(s): 44791	87-4479	190				
TPH-DRO CALUFT(Soils) w/Si Gel	89	86	33-140	4	20				
Batch number: A050691AB	Sample	number	(s): 44791	87-44793	190				
Methyl Tertiary Butyl Ether	90	88	49-140	3	30				
di-Isopropyl ether	94	91	63-129	3	30				
Ethyl t-butyl ether	88	87	65-123	2	30				
t-Amyl methyl ether	90	87	58-126	4	30				
t-Butyl alcohol	94	87	46-148	7	30				
Benzene	103	97	67-123	6	30				
1,2-Dichloroethane	97	93	62-130	4	30				
Toluene	105	101	55-125	5	30				
1,2-Dibromoethane	97	94	62-116	4	30				
Ethylbenzene	104	98	50-127	6	30				
Xylene (Total)	106	99	54-123	7	30				

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 * 717-656-2300 Fax: 717-656-2681 * www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Client Name: ChevronTexaco C/O Cambria

Group Number: 934860

Reported: 03/18/05 at 12:28 PM

Sample Matrix Quality Control

MSD MS/MSD RPD BKG DUP DUP MS Dup RPD %REC RPD Analysis Name %REC MAX RPD Limits Conc Conc Max

Surrogate Quality Control

Analysis Name: TPH-GRO - Soils Batch number: 05071A02B Trifluorotoluene-F

4479187 4479188 59* 4479189 61 4479190 Blank 92 90 LCS MS 70 MSD

61-122 Limits:

Analysis Name: TPH-DRO CALUFT(Soils) w/Si Gel

Batch number: 050740007A Orthoterphenyl

4479187 4479188 80 4479189 101 4479190 86 Blank LCS 96 MS 92 MSD 92

Limits: 35-136

Analysis Name: BTEX+5 Oxygenates+EDC+EDB Batch number: A050691AB

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
4479187	102	96	112	85
4479188	102	97	111	84
4479189	103	101	110	86
4479190	105	109	106	90
Blank	104	102	107	89
LCS	102	99	110	92
MS	103	98	111	92
MSD	103	98	110	92
Limits:	70-129	70-121	70-130	70-128

*- Outside of specification

(2) The background result was more than four times the spike added.

The result for one or both determinations was less than five times the LOQ.

Chevron California Pegion Analysis Pequest/Chain of Custody

. Where quality is a			, .	~					,	_						9187-90		3486C	
Facility#: Chuy	TI	(alt	1-1	669									Α	naly	ses F	lequested			
Facility #: CYCLY Site Address: 90 C Chevron PM: D.	orte	mad	wa.	TOWNCO			ra	To the same				dnuse	P	res	ervati	on Codes	Preserv H = HCl N = HNO ₃ S = H ₂ SO ₄	T = Thios B = NaOl O = Othe	ulfate
Consultant/Office:	B. E	Pole Repeat	No.	Fax#: 9166	30-189	S(g)	Grab	Composite	Total Number of Containers	EX + MTBE 8260 X 8021 □	8015 MOD GRO	H 8015 MOD DRO-X Silica Gel Cleanup	8260 full scan	L Oxygenates	Lead 7420 🗆 7421 🗀		U Value report Must meet lo possible for 8 8021 MTBE Co Confirm high Confirm all h	ting needed west detecti 1260 compo nfirmation est hit by 82 its by 8260 y's on highe	ion limits unds 260
Point Name MW-4E5 MW-4ETO MW-4ETO MW-4ETO				Year Month Day 0.5/03/08		X X X	Š X X X		1	NAME OF THE PROPERTY OF THE PR	XXX	M XXXX	828	HXXXX	687		Comments 1 TPHq 1 BTEX TAME, TBA, 20 1,2-DC	Remarks TPHd	,
Turnaround Time Re	quested 72 hou 4 day	r. 4	ase circl	e)	Relinquished		_	-			3 .		Date Date		Time	Received by:		Date	Time
Data Package Option QC Summary	s (please Type I – Fi	circle if requ	uired)	d	Relinquished Relinquished UPS	by Comp)	0	ther_		2°	<u> </u>	Date	<u> </u>	Time	Received by: Received by: Received by: Custody Seals Into	4 Kentyon	Date 3/10/05	Time

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
ug	microgram(s)	mg	milligram(s)
ml	milliliter(s)	1	liter(s)
m3	cubic meter(s)	ul	microliter(s)

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- Dry weight
 basis
 Results printed under this heading have been adjusted for moisture content. This increases the analyte weight
 concentration to approximate the value present in a similar sample without moisture. All other results are reported
 on an as-received basis.

U.S. EPA CLP Data Qualifiers:

	Organic Qualifiers		Inorganic Qualifiers
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" td="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	E	Estimated due to interference
C	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
E	Concentration exceeds the calibration range of the instrument	S	Method of standard additions (MSA) used for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
P	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 +717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

ChevronTexaco C/O Cambria 4111 Citrus Avenue Suite 9 Rocklin CA 95677 916-630-1855

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 934862. Samples arrived at the laboratory on Thursday, March 10, 2005. The PO# for this group is 99011184 and the release number is THURMAN.

Client Description
SP-S-050308 Composite Soil

<u>Lancaster Labs Number</u> 4479193

1 COPY TO 1 COPY TO Cambria Environmental

IWM, Inc.

Attn: Jami Shaffer Attn: Jay DeLeon

Questions? Contact your Client Services Representative Angela M Miller at (717) 656-2300.

Respectfully Submitted,

Lana M Xanffinerin Dana M. Kauffman Group Leader

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. SW 4479193

SP-S-050308 Composite Soil Facility# 94737 MTI# 61H-1669

90 Corte Madera-Corte Mad T0604100033 SP

Collected:03/08/2005 14:00 by KH

Submitted: 03/10/2005 09:10 Reported: 03/16/2005 at 16:45

Discard: 04/16/2005

H Account Number: 10880

CETR

ChevronTexaco C/O Cambria 4111 Citrus Avenue

Suite 9

Rocklin CA 95677

473SP

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
05547	TPH - DRO CA LUFT (Soils)	n.a.	N.D.	10.	mg/kg	1
06955	Lead	7439-92-1	5.37	0.921	mg/kg	1
01726	TPH-GRO - Soils					
01727	TPH-GRO - Soils	n.a.	N.D.	1.0	mg/kg	25
	in methanol. The reporting li The reported concentration of gasoline constituents eluting start time. A poor surrogate recovery was poor surrogate recovery was ag effect.	TPH-GRO does no prior to the C6 observed. The	t include MTBE o (n-hexane) TPH- analysis was rep	r other GRO range eated and a		
02160	BTEX/MTBE					
02174	Benzene	71-43-2	N.D.	0.005	mg/kg	25
02177	Toluene	108-88-3	N.D.	0.005	mg/kg	25
02178	Ethylbenzene	100-41-4	N.D.	0.005	mg/kg	25
02182	Total Xylenes	1330-20-7	N.D.	0.02	mg/kg	25
02199	MTBE	1634-04-4	N.D.	0.05	mg/kg	25
	The analysis for volatiles was in methanol. The reporting li					

		Laboratory	Chro	nicle		
CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
05547	TPH - DRO CA LUFT (Soils)	CALUFT-DRO/8015B, Modified	1	03/16/2005 09:00	Sarah M Snyder	1
06955	Lead	SW-846 6010B	1	03/14/2005 06:59	Joanne M Gates	1
01726	TPH-GRO - Soils	N. CA LUFT Gasoline Method	1	03/16/2005 00:15	Corie L Hilyer	25
02160	BTEX/MTBE	SW-846 8021B	1	03/16/2005 00:15	Corie L Hilyer	25
01150	GC - Bulk Soil Prep	SW-846 5035	1	03/11/2005 16:50	Eric L Vera	n.a.
05708	SW SW846 ICP Digest	SW-846 3050B	1	03/13/2005 20:00	Annamaria Stipkovits	1
07024	DRO Alternate Soil	TPH by CA LUFT	1	03/15/2005 14:45	Jason A Heisey	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. SW 4479193

SP-S-050308 Composite Soil Facility# 94737 MTI# 61H-1669 90 Corte Madera-Corte Mad T0604100033 SP Collected: 03/08/2005 14:00

Submitted: 03/10/2005 09:10 Reported: 03/16/2005 at 16:45 Discard: 04/16/2005

473SP

CETR

Account Number: 10880

ChevronTexaco C/O Cambria 4111 Citrus Avenue Suite 9 Rocklin CA 95677

Group Number: 934862

12425, Lancaster. PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: ChevronTexaco C/O Cambria

Reported: 03/16/05 at 04:45 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Blank Result	Blank MDL	Report Units	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Sample r	number(s): 0.930	4479193 mg/kg	98		86-109		
Sample r	number(s):	4479193 mg/kg	97		61-130		
Sample r	umber(s):	4479193					
N.D.	1.0	mg/kg	93		67-119		
N.D.	0.005	mg/kg	94		85-115		
					81-119		
N.D.	0.05	mg/kg	95		71-118		
	Sample r N.D. Sample r N.D. Sample r N.D. N.D. N.D. N.D.	Result MDL Sample number(s): N.D. 0.930 Sample number(s): N.D. 10. Sample number(s): N.D. 1.0 N.D. 0.005 N.D. 0.005 N.D. 0.005 N.D. 0.005 N.D. 0.002	Result MDL Units Sample number(s): 4479193 N.D. 0.930 mg/kg Sample number(s): 4479193 N.D. 10. mg/kg Sample number(s): 4479193 N.D. 1.0 mg/kg N.D. 0.005 mg/kg	Result MDL Units REC Sample number(s): 4479193 N.D. 0.930 mg/kg 98 Sample number(s): 4479193 N.D. 10. mg/kg 97 Sample number(s): 4479193 N.D. 1.0 mg/kg 93 N.D. 1.0 mg/kg 94 N.D. 0.005 mg/kg 94 N.D. 0.005 mg/kg 90 N.D. 0.005 mg/kg 91 N.D. 0.005 mg/kg 91 N.D. 0.002 mg/kg 94	Result MDL Units %REC %REC Sample number(s): 4479193 N.D. 0.930 mg/kg 98 Sample number(s): 4479193 N.D. 10. mg/kg 97 Sample number(s): 4479193 N.D. 1.0 mg/kg 93 N.D. 1.0 mg/kg 94 N.D. 0.005 mg/kg 94 N.D. 0.005 mg/kg 90 N.D. 0.005 mg/kg 91 N.D. 0.005 mg/kg 91 N.D. 0.002 mg/kg 94	Result MDL Units %REC %REC Limits Sample number(s): 4479193 N.D. 0.930 mg/kg 98 86-109 Sample number(s): 4479193 N.D. 10. mg/kg 97 61-130 Sample number(s): 4479193 N.D. 1.0 mg/kg 93 67-119 N.D. 0.005 mg/kg 94 85-115 N.D. 0.005 mg/kg 90 81-119 N.D. 0.005 mg/kg 91 85-115 N.D. 0.02 mg/kg 94 85-115	Result MDL Units REC REC Limits RPD Sample number(s): 4479193 98 86-109 Sample number(s): 4479193 97 61-130 Sample number(s): 4479193 97 61-130 Sample number(s): 4479193 93 67-119 N.D. 0.005 mg/kg 94 85-115 N.D. 0.005 mg/kg 90 81-119 N.D. 0.005 mg/kg 91 85-115 N.D. 0.02 mg/kg 94 85-115 N.D. 0.02 mg/kg 94 85-115

Sample Matrix Quality Control

Analysis Name	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD MAX	BKG Conc	DUP Conc	DUP RPD	Dup RPD Max
Batch number: 050725708001 Lead	Sample	number 96	(s): 447919 75-125	3	20	4.49	4.51	1 (1)	20
Lead	36	30	75-125	1	20	4.42	4.51	1 (1)	20
Batch number: 050740007A	Sample	number	(s): 447919	3					
TPH - DRO CA LUPT (Soils)	89	86	33-140	4	20				
Batch number: 05074A34A	Sample	number	(s): 447919	3					
TPH-GRO - Soils	115	115	39-118	0	30				
Benzene	98	95	52-135	2	30				
Toluene	95	91	59-129	5	30				
Ethvlbenzene	96	94	56-132	2	30				
Total Xylenes	102	99	54-134	2	30				
MTBE	107	104	45-141	3	30				

Surrogate Quality Control

Analysis Name: TPH - DRO CA LUFT (Soils) Batch number: 050740007A Orthoterphenyl

*- Outside of specification

(2) The background result was more than four times the spike added.

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

63-126

Page 2 of 2

Quality Control Summary

Client Name: ChevronTexaco C/O Cambria

Group Number: 934862

Reported: 03/16/05 at 04:45 PM

61-122

Surrogate Quality Control

		bullogues guaras/ comerca
4479193	83	
Blank	94	
LCS	96	
MS	92	
MSD	92	
Limits:	35-136	
	lame: BTEX/MTBE	
Batch numb	er: 05074A34A	
	Trifluorotoluene-F	Trifluorotoluene-P
4479193	59*	63
Blank	101	104
LCS	108	108
Will you will		
MS	84	85

*- Outside of specification

Limits:

(1) The result for one or both determinations was less than five times the LOQ.

(2) The background result was more than four times the spike added.

Chevron California Region Analysis Request/Chain of Custody

Lancaster Where quality is a	<u>abor</u>	atories		****		X.89	Ad	xct. #	10	88	0	Sa	mple	or L	H4	199	aborat 1192	ories	4	only	SCR	9	3486	2
				1669									A	naly	ses	Req	uested			٦				
Facility#: Chev		9-1	173	57		-							P	res	erva	tion	Codes				Pre	serv	ative Code	
Site Address: 90 Cortemadera Town Center Cortemadera											\dashv	9			+	+	-		-	-	H = HCI N = HNC		T = Thios B = NaOl	
Chevron PM: D. Th									90			Gel Cleanup								- [S = H ₂ S	O ₄	O = Othe	
Consultant/Office: R	ocki	in					1		Number of Containers	8021		8 Ge			+	0				- 1			ting needed west detecti	an limita
Consultant Prj. Mgr.: K	5, Ex	opler					1		Contra	0 802		Silica				Pag							260 compo	
Consultant Phone #:91	663	0189	55	Fax #: 916 62	30185	6	1		ofo	8260	GRO	DRO _			7421	J					8021 MT	BE Co	nfirmation	
Sampler: K, Hos									nber	00 1		0	_	nates	3 742	-						_	est hit by 82	60
Service Order #:	/		_ Nor	n SAR:			1	Composite	Nun	MTB	TPH 8015 MOD	TPH 8015 MOD	8260 full scan	Oxygenates	Lead 7420 🖂	1					1755 S.		its by 8260 y's on highe	et hit
Field	Matrix	Repeat Sample	Тор	Vees Month Day	. Time	New	Grab	E	Total	BTEX.	PH8	PH 80	260 fu	ĭ	ead 7	19							y's on all hit	
COM P	SOIL	Sample	Depth	Year Month Day 2005/03/08	1400	X	Ĭ.	X	3	Ż	X	×	60		7	X	1				Comme	nts /	Remarks	. 1
Sample ID																1				\exists	TYH	11	TPHd, MTB ead	,
SP our b.																					BTE	Χ,	MTB	61
Epplin Am			_				_	_	_	_	_										TAL	1/	and	
=(14)05	-	-	-				-	-		-	-	_			H	-	-	-	-	-	1010	M (enci	
			-				1	-				-			H	-		+		\vdash				
						. *.																		
																					7			
			-				1	-	-	_				_			_	-		Ш				
		-				-	1	\vdash	\vdash						H		+	-		\vdash				
Turnaround Time Req	uested			e) /	Relinquishe		00	u		_		3	Date A/o	S	Time	8	Receive	d by:					Date	Time
STD. TAT 24 hour	72 hou		day		Relinquishe		(1				1	Date		Time	$\overline{}$	Receive	d by:		_	_		Date	Time
Data Package Options	s (please	circle if req	uired)	2114103	Relinquishe	d by:						+	Date	1	Time	e I	Receive	d by:					Qate	Time
QC Summary Type I – Full Relinquished Type VI (Raw Data) Coelt Deliverable not needed					Relinquished by Commercial Carrier: Received by: UPS FedEx Other						200	. /-	Wit	1	3/10/05	Time 0910								
WIP (RWQCB) Disk Temperature Upon Ro							ceip		-		20				_	-	Custody	Seal	s Inja	4	Yes	70	71900	
			-					_			_	_	_		_				0		(,,,,	7.5	3460 Pay	10010

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
C	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	Ib.	pound(s)
g	gram(s)	kg	kilogram(s)
ug	microgram(s)	mg	milligram(s)
ml	milliliter(s)	1	liter(s)
m3	cubic meter(s)	ul	microliter(s)

- less than The number following the sign is the limit of quantitation, the smallest amount of analyte which can be reliably determined using this specific test.
- greater than
- J estimated value – The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- ppm parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- Dry weight Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported basis on an as-received basis.

U.S. EPA CLP Data Qualifiers:

	Organic Qualifiers		Inorganic Qualifiers
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	E	Estimated due to interference
C	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
E	Concentration exceeds the calibration range of the instrument	S	Method of standard additions (MSA) used for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
Р	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 +717-656-2300 Fix: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

ChevronTexaco c/o Cambria Suite 9 4111 Citrus Avenue Rocklin CA 95677 916-630-1855

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 936086. Samples arrived at the laboratory on Saturday, March 19, 2005. The PO# for this group is 99011184 and the release number is MTI.

Client Description			Lancaster Labs Number
QA-T-050318	NA Y	Water	4486112
MW-1-W-050318	Grab	Water	4486113
MW-2-W-050318	Grab	Water	4486114
MW-3-W-050318	Grab	Water	4486115
MW-4-W-050318	Grab	Water	4486116
ACMW-1-W-050318	Grah	Water	4486117

1 COPY TO ELECTRONIC COPY TO Cambria C/O Gettler- Ryan Gettler-Ryan Attn: Deanna L. Harding Attn: Cheryl Hansen

2425 New Holland Pike, PO Box 12425. Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2661 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Megan A Moeller at (717) 656-2300.

Respectfully Submitted,

Jenfer E Hers
Jenifer Hess
Group Leader

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 4486112

QA-T-050318 NA Water Facility# 94737 Job# 385262 MTI# 61H-1669 GRD 90 Madera-Corte Madera T0604100033 QA

Collected: 03/18/2005

Account Number: 10904

Submitted: 03/19/2005 09:45

Reported: 03/29/2005 at 13:34 Discard: 04/29/2005

ChevronTexaco c/o Cambria

Suite 9 4111 Citrus Avenue

Rocklin CA 95677

MCMQA

CAT			As Received	As Received Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01728	TPH-GRO - Waters	n.a.	N.D.	50.	ug/l	1
	The reported concentration of gasoline constituents eluting start time.					
06054	BTEX+MTBE by 8260B					
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1
05407	Toluene	108-88-3	N.D.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	N.D.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.5	ug/l	1

m 1			C13	
1.5	nors	torv	Chron	7010
LIG.	DOTa	COLY	CITT OIL	1010

	-		Analysis			Dilution
s Name	Method	Trial#	Date and T	ime	Analyst	Factor
		1	03/24/2005	22:15	Brian C Veety	1
BE by 8260B	SW-846 8260B	1	03/22/2005	11:51	Ginelle L Haines	1
Water Prep	SW-846 5030B	1	03/24/2005	22:15	Brian C Veety	1
OA Water Prep	SW-846 5030B	1	03/22/2005	11:51	Ginelle L Haines	n.a.
	0 - Waters CBE by 8260B Water Prep	O - Waters N. CA LUFT Gasoline Method TBE by 8260B SW-846 8260B Water Prep SW-846 5030B	0 - Waters N. CA LUPT Gasoline 1 Method IBE by 8260B SW-846 8260B 1 Water Prep SW-846 5030B 1	Is Name Method Trial* Date and T O - Waters N. CA LUFT Gasoline 1 03/24/2005 Method TBE by 8260B SW-846 8260B 1 03/22/2005 Water Prep SW-846 5030B 1 03/24/2005	0 - Waters N. CA LUPT Gasoline 1 03/24/2005 22:15 Method TBE by 8260B SW-846 8260B 1 03/22/2005 11:51 Water Prep SW-846 5030B 1 03/24/2005 22:15	Name Method Trial# Date and Time Analyst

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 4486113

MW-1-W-050318 Grab Water Facility# 94737 Job# 385262 MTI# 61H-1669

90 Madera-Corte Madera T0604100033 MW-1

Collected:03/18/2005 09:35 by KK

Submitted: 03/19/2005 09:45 Reported: 03/29/2005 at 13:34 Discard: 04/29/2005

Account Number: 10904

ChevronTexaco c/o Cambria

Suite 9

4111 Citrus Avenue Rocklin CA 95677

MCM01

				As Received		
				We WeceTien		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01728	TPH-GRO - Waters	n.a.	N.D.	50.	ug/l	1
	The reported concentration of gasoline constituents eluting start time.	TPH-GRO does no prior to the C6	t include MTBE o (n-hexane) TPH-	GRO range		
06610	TPH-DRO CALUFT(Water) w/Si Gel	n.a.	360.	50.	ug/l	1
01594	BTEX+5 Oxygenates+EDC+EDB+ETOH					
01587	Ethanol	64-17-5	N.D.	50.	ug/l	1
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1
02011	di-Isopropyl ether	108-20-3	N.D.	0.5	ug/l	1
02013	Ethyl t-butyl ether	637-92-3	N.D.	0.5	ug/l	1
02014	t-Amyl methyl ether	994-05-8	N.D.	0.5	ug/l	1
02015	t-Butyl alcohol	75-65-0	N.D.	5.	ug/l	1
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	N.D.	0.5	ug/l	1
05407	Toluene	108-88-3	N.D.	0.5	ug/l	1
05412	1,2-Dibromoethane	106-93-4	N.D.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	N.D.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.5	ug/l	1
	01728 06610 01594 01587 02010 02011 02013 02014 02015 05401 05402 05407 05412 05415	TPH-GRO - Waters The reported concentration of gasoline constituents eluting start time. TPH-DRO CALUFT(Water) w/Si Gel D1594 BTEX+5 Oxygenates+EDC+EDB+ETOH D1587 Ethanol D2010 Methyl Tertiary Butyl Ether D2011 di-Isopropyl ether D2013 Ethyl t-butyl ether D2014 t-Amyl methyl ether D2015 t-Butyl alcohol D5401 Benzene D5402 1,2-Dichloroethane D5412 1,2-Dibromoethane D5415 Ethylbenzene	01728 TPH-GRO - Waters n.a. The reported concentration of TPH-GRO does no gasoline constituents eluting prior to the C6 start time. 06610 TPH-DRO CALUFT(Water) w/Si Gel n.a. 01594 BTEX+S Oxygenates+EDC+EDB+ETOH 01587 Ethanol 64-17-5 02010 Methyl Tertiary Butyl Ether 1634-04-4 02011 di-Isopropyl ether 108-20-3 02013 Ethyl t-butyl ether 637-92-3 02014 t-Amyl methyl ether 994-05-8 02015 t-Butyl alcohol 75-65-0 05401 Benzene 71-43-2 05402 1,2-Dichloroethane 107-06-2 05407 Toluene 108-88-3 05412 1,2-Dibromoethane 106-93-4 05415 Ethylbenzene 100-41-4	### TPH-GRO - Waters	TPH-GRO - Waters n.a. N.D. 50.	Dispay

Talanna	be as save a	Channi	770
Labora	COLA	CHIOHI	CTE

		Laboratory	Chro	nicie		
CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01728	TPH-GRO - Waters	N. CA LUFT Gasoline Method	1	03/25/2005 03:33	Brian C Veety	1
06610	TPH-DRO CALUFT(Water) w/Si Gel	CALUFT-DRO/8015B, Modified	1	03/25/2005 09:37	Tracy A Cole	1
01594	BTEX+5 Oxygenates+EDC+EDB+ETOH	SW-846 8260B	1	03/24/2005 15:41	Ginelle L Haines	1
01146	GC VOA Water Prep	SW-846 5030B	1	03/25/2005 03:33	Brian C Veety	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	03/24/2005 15:41	Ginelle L Haines	n.a.
02135	Extraction - DRO Water Special	TPH by CA LUFT	1	03/22/2005 07:30	Danette S Blystone	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 4486114

MW-2-W-050318 Grab Water Facility# 94737 Job# 385262 MTI# 61H-1669 GRI 90 Madera-Corte Madera T0604100033 MW-2

Collected:03/18/2005 10:10 by KK

Submitted: 03/19/2005 09:45 Reported: 03/29/2005 at 13:34

Discard: 04/29/2005

Account Number: 10904

ChevronTexaco c/o Cambria

Suite 9

4111 Citrus Avenue Rocklin CA 95677

36.5	1.0	~	-
M	m	u	1

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01728	TPH-GRO - Waters	n.a.	670.	100.	ug/l	2
	The reported concentration of gasoline constituents eluting start time.					
06610	TPH-DRO CALUFT(Water) w/Si Gel	n.a.	410.	50.	ug/l	1
01594	BTEX+5 Oxygenates+EDC+EDB+ETOH					
01587	Ethanol	64-17-5	N.D.	50.	ug/l	1
02010	Methyl Tertiary Butyl Ether	1634-04-4	36.	0.5	ug/l	1
02011	di-Isopropyl ether	108-20-3	N.D.	0.5	ug/l	1
02013	Ethyl t-butyl ether	637-92-3	N.D.	0.5	ug/l	1
02014	t-Amyl methyl ether	994-05-8	4.	0.5	ug/l	1
02015	t-Butyl alcohol	75-65-0	6.	5.	ug/l	1
05401	Benzene	71-43-2	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	N.D.	0.5	ug/l	1
05407	Toluene	108-88-3	N.D.	0.5	ug/l	1
05412	1,2-Dibromoethane	106-93-4	N.D.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	0.5	0.5	ug/l	1

		Laboratory	Chro	nicle		
CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01728	TPH-GRO - Waters	N. CA LUFT Gasoline Method	1	03/25/2005 04:01	Brian C Veety	2
06610	TPH-DRO CALUFT(Water) w/Si Gel	CALUFT-DRO/8015B, Modified	1	03/25/2005 10:01	Tracy A Cole	1
01594	BTEX+5 Oxygenates+EDC+EDB+ETOH	SW-846 8260B	1	03/24/2005 16:06	Ginelle L Haines	1
01146	GC VOA Water Prep	SW-846 5030B	1	03/25/2005 04:01	Brian C Veety	2
01163	GC/MS VOA Water Prep	SW-846 5030B	1	03/24/2005 16:06	Ginelle L Haines	n.a.
02135	Extraction - DRO Water	TPH by CA LUFT	1	03/22/2005 07:30	Danette S Blystone	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax:717-656-2681 * www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 4486115

MW-3-W-050318 Grab Water Facility# 94737 Job# 385262 MTI# 61H-1669 GR 90 Madera-Corte Madera T0604100033 MW-3

Collected:03/18/2005 09:00 by KK

Submitted: 03/19/2005 09:45 Reported: 03/29/2005 at 13:34

Discard: 04/29/2005

Account Number: 10904

ChevronTexaco c/o Cambria

Suite 9

4111 Citrus Avenue Rocklin CA 95677

			3

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01728	TPH-GRO - Waters	n.a.	N.D.	50.	ug/l	1
	The reported concentration of gasoline constituents eluting start time.					
06610	TPH-DRO CALUFT(Water) w/Si Gel	n.a.	930.	50.	ug/l	1
01594	BTEX+5 Oxygenates+EDC+EDB+ETOH	ı				
01587	Ethanol	64-17-5	N.D.	50.	ug/l	1
02010	Methyl Tertiary Butyl Ether	1634-04-4	150.	0.5	ug/l	1
02011	di-Isopropyl ether	108-20-3	N.D.	0.5	ug/l	1
02013	Ethyl t-butyl ether	637-92-3	N.D.	0.5	ug/l	1
02014	t-Amyl methyl ether	994-05-8	7.	0.5	ug/l	1
02015	t-Butyl alcohol	75-65-0	260.	5.	ug/l	1
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	N.D.	0.5	ug/l	1
05407	Toluene	108-88-3	N.D.	0.5	ug/l	1
05412	1,2-Dibromoethane	106-93-4	N.D.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	N.D.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.5	ug/l	1
					0.7000000	

		Laboratory	Chro	nicle		
CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01728	TPH-GRO - Waters	N. CA LUFT Gasoline Method	1	03/25/2005 04:30	Brian C Veety	1
06610	TPH-DRO CALUFT(Water) w/Si Gel	CALUFT-DRO/8015B, Modified	1	03/25/2005 10:25	Tracy A Cole	1
01594	BTEX+5 Oxygenates+EDC+EDB+ETOH	SW-846 8260B	1	03/24/2005 16:31	Ginelle L Haines	1
01146	GC VOA Water Prep	SW-846 5030B	1	03/25/2005 04:30	Brian C Veety	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	03/24/2005 16:31	Ginelle L Haines	n.a.
02135	Extraction - DRO Water Special	TPH by CA LUFT	1	03/22/2005 07:30	Danette S Blystone	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4486116

MW-4-W-050318 Grab Water Facility# 94737 Job# 385262 MTI# 61H-1669 90 Madera-Corte Madera T0604100033 MW-4

Collected:03/18/2005 08:00 by KK

Submitted: 03/19/2005 09:45 Reported: 03/29/2005 at 13:34 Discard: 04/29/2005

Account Number: 10904

ChevronTexaco c/o Cambria

Suite 9

4111 Citrus Avenue Rocklin CA 95677

MCM04

CAT			As Received	As Received Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01728	TPH-GRO - Waters	n.a.	N.D.	50.	ug/l	1
	The reported concentration of gasoline constituents eluting gastart time. The vial submitted for volatile	orior to the C6	(n-hexane) TPH-	GRO range		
	of analysis. Due to the volati	le nature of t	he analytes, it	is not		
	appropriate for the laboratory	to adjust the	pH at the time o	f sample		
	receipt. The pH of this sample	e was pH = 7.				
06610	TPH-DRO CALUFT(Water) w/Si Gel	n.a.	210.	50.	ug/l	1
01594	BTEX+5 Oxygenates+EDC+EDB+ETOH					
				192		
01587	Ethanol	64-17-5	N.D.	50.	ug/l	1
02010	Methyl Tertiary Butyl Ether	1634-04-4	1.	0.5	ug/l	1
02011	di-Isopropyl ether	108-20-3	N.D.	0.5	ug/l	1
02013	Ethyl t-butyl ether	637-92-3	N.D.	0.5	ug/l	1
02014	t-Amyl methyl ether	994-05-8	N.D.	0.5	ug/l	1
02015	t-Butyl alcohol	75-65-0	N.D.	5.	ug/l	1
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	N.D.	0.5	ug/l	1
05407	Toluene	108-88-3	0.5	0.5	ug/l	1
05412	1,2-Dibromoethane	106-93-4	N.D.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	N.D.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.5	ug/l	1
				900000		100

- 1		~1	
Labora	FORU	Chron	7010
Labora	COLY	CITT OIL	1-1-

CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01728	TPH-GRO - Waters	N. CA LUFT Gasoline Method	1	03/25/2005 09:32	Brian C Veety	1
06610	TPH-DRO CALUFT(Water) w/Si Gel	CALUFT-DRO/8015B, Modified	1	03/25/2005 14:27	Tracy A Cole	1
01594	BTEX+5 Oxygenates+EDC+EDB+ETOH	SW-846 8260B	1	03/24/2005 17:21	Ginelle L Haines	1
01146	GC VOA Water Prep	SW-846 5030B	1	03/25/2005 09:32	Brian C Veety	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	03/24/2005 17:21	Ginelle L Haines	n.a.
02135	Extraction - DRO Water Special	TPH by CA LUFT	1	03/22/2005 07:30	Danette S Blystone	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 * 717-656-2300 Fax: 717-656-2681 * www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4486116

MW-4-W-050318 Grab Water Facility# 94737 Job# 385262 MTI# 61H-1669 GRD 90 Madera-Corte Madera T0604100033 MW-4 Collected:03/18/2005 08:00 by KK

Submitted: 03/19/2005 09:45 Reported: 03/29/2005 at 13:34 Discard: 04/29/2005

MCM04

Account Number: 10904

ChevronTexaco c/o Cambria Suite 9 4111 Citrus Avenue Rocklin CA 95677

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 4486117

ACMW-1-W-050318 Grab Water Facility# 94737 Job# 385262 MTI# 61H-1669 GRD 90 Madera-Corte Madera T0604100033 ACMW-1

Collected:03/18/2005 08:35 by KK

Submitted: 03/19/2005 09:45

Reported: 03/29/2005 at 13:34 Discard: 04/29/2005

Suite 9 4111 Citrus Avenue Rocklin CA 95677

Account Number: 10904

ChevronTexaco c/o Cambria

MCMA1

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01728	TPH-GRO - Waters	n.a.	N.D.	50.	ug/l	1
	The reported concentration of T gasoline constituents eluting p start time.					
06610	TPH-DRO CALUFT(Water) w/Si Gel	n.a.	100.	50.	ug/l	1
01594	BTEX+5 Oxygenates+EDC+EDB+ETOH					
01587	Ethanol	64-17-5	N.D.	50.	ug/l	1
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1
02011	di-Isopropyl ether	108-20-3	N.D.	0.5	ug/l	1
02013	Ethyl t-butyl ether	637-92-3	N.D.	0.5	ug/1	1
02014	t-Amyl methyl ether	994-05-8	N.D.	0.5	ug/l	1
02015	t-Butyl alcohol	75-65-0	N.D.	5.	ug/l	1
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	N.D.	0.5	ug/l	1
05407	Toluene	108-88-3	N.D.	0.5	ug/l	1
05412	1,2-Dibromoethane	106-93-4	N.D.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	N.D.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.5	ug/l	1

		Laboratory	Chro	nicle		
CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01728	TPH-GRO - Waters	N. CA LUFT Gasoline Method	1	03/25/2005 05:28	Brian C Veety	1
06610	TPH-DRO CALUFT(Water) w/Si Gel	CALUFT-DRO/8015B, Modified	1	03/25/2005 10:49	Tracy A Cole	1
01594	BTEX+5 Oxygenates+EDC+EDB+ETOH	SW-846 8260B	1	03/24/2005 17:46	Ginelle L Haines	1
01146	GC VOA Water Prep	SW-846 5030B	1	03/25/2005 05:28	Brian C Veety	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	03/24/2005 17:46	Ginelle L Haines	n.a.
02135	Extraction - DRO Water Special	TPH by CA LUFT	1	03/22/2005 07:30	Danette S Blystone	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 4

Quality Control Summary

Client Name: ChevronTexaco c/o Cambria

Reported: 03/29/05 at 01:34 PM

Group Number: 936086

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank Result	Blank MDL	Report Units	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: 050800017A					50	61 120	4.0	
TPH-DRO CALUFT(Water) w/Si Gel	N.D.	25.	ug/l	85	70	61-130	19	20
Batch number: 05083A08B	Sample	number(s):	4486112					
TPH-GRO - Waters	N.D.	50.	ug/l	106	107	70-130	1	30
Batch number: 05083A08C	Sample	number(s):	4486113-44	86115,44	86117			
TPH-GRO - Waters	N.D.	50.	ug/l	106	107	70-130	1	30
Batch number: 05083A08D		number(s):						
TPH-GRO - Waters	N.D.	50.	ug/l	106	107	70-130	1	30
Batch number: Z050812AA	Sample	number(s):	4486112					
Methyl Tertiary Butyl Ether	N.D.		ug/l	91		77-127		
Benzene	N.D.	0.5	ug/l	93		85-117		
Toluene	N.D.	0.5	ug/l	97		85-115		
Ethylbenzene	N.D.	0.5	ug/l	95		82-119		
Xylene (Total)	N.D.	0.5	ug/l	96		83-113		
Batch number: Z050831AA	Sample	number(s):						
Ethanol	N.D.		ug/l	95		30-155		
Methyl Tertiary Butyl Ether		0.5	ug/l	87		77-127		
di-Isopropyl ether	N.D.		ug/l	84		67-130		
Ethyl t-butyl ether	N.D.		ug/l	86		74-120		
t-Amyl methyl ether	N.D.		ug/l	85		79-113		
t-Butyl alcohol	N.D.	5.	ug/l	90		57-141		
Benzene	N.D.	0.5	ug/l	90		85-117		
1,2-Dichloroethane	N.D.	0.5	ug/l	99		77-132		
Toluene	N.D.	0.5	ug/l	88		85-115		
1,2-Dibromoethane	N.D.	0.5	ug/1	85		81-114		
Ethylbenzene	N.D.	0.5	ug/1	95		82-119		
Xylene (Total)	N.D.	0.5	ug/l	95		83-113		

Sample Matrix Quality Control

Analysis Name	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD MAX	BKG Conc	DUP Conc	DUP RPD	Dup RPD Max
Batch number: 05083A08B TPH-GRO - Waters	Sample	number	(s): 44861 63-154	12					

Sample number(s): 4486113-4486115,4486117

*- Outside of specification

Batch number: 05083A08C

(1) The result for one or both determinations was less than five times the LOQ.

(2) The background result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 4

Quality Control Summary

Client Name: ChevronTexaco c/o Cambria

Group Number: 936086

Reported: 03/29/05 at 01:34 PM

Sample Matrix Quality Control

Analysis Name TPH-GRO - Waters	MS %REC 136	MSD %REC	MS/MSD Limits 63-154	RPD	RPD MAX	BKG Conc	DUP Conc	DUP RPD	Dup RPD
Batch number: 05083A08D	Sample	number	(s): 44861: 63-154	16					
TPH-GRO - Waters	136		03-134						
Batch number: Z050812AA	Sample	number	(s): 44861	12					
Methyl Tertiary Butyl Ether	87	90	69-134	3	3.0				
Benzene	97	96	83-128	1	30				
Toluene	100	100	83-127	0	30				
Ethylbenzene	99	100	82-129	0	3.0				
Xylene (Total)	100	101	82-130	1	30				
Batch number: Z050831AA	Sample	number	(s): 44861	13-44861	117				
Ethanol	105	91	26-153	14	30				
Methyl Tertiary Butyl Ether	89	89	69-134	0	30				
di-Isopropyl ether	83	83	75-130	1	30				
Ethyl t-butyl ether	86	87	78-119	1	30				
t-Amyl methyl ether	8.9	88	77-117	1	30				
t-Butyl alcohol	89	91	51-147	2	30				
Benzene	95	96	83-128	0	30				
1,2-Dichloroethane	96	97	73-136	1	30		104		
Toluene	98	100	83-127	1	30				
1,2-Dibromoethane	93	94	78-120	2	30				
Ethylbenzene	98	97	82-129	1	30				
Xylene (Total)	99	97	82-130	3	30				

Surrogate Quality Control

Analysis Name: TPH-DRO CALUFT(Water) w/Si Gel Batch number: 050800017A Orthoterphenyl

4486113 4486114 95 80 4486115 89 4486116 4486117 84 Blank LCS 115 LCSD 111

35-136

Analysis Name: TPH-GRO - Waters Batch number: 05083A08B Trifluorotoluene-F

4486112 114 Blank 113 116 LCS LCSD MS 119

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The background result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax: 717-656-2681 * www.lancasterlabs.com

Page 3 of 4

Quality Control Summary

Client Name: ChevronTexaco c/o Cambria

Group Number: 936086

Reported: 03/29/05 at 01:34 PM

Surrogate Quality Control

Limits:	70-142			
Analysis	Name: TPH-GRO - Waters			
	ber: 05083A08C			
Daccii iidiii	Trifluorotoluene-F			
	11111401000140110 1			
4486113	115			
4486114	114			
4486115	110			
4486117	115			
Blank	112			
LCS	116			
LCSD	115			
MS	119			
PIO	119			
Limits:	70-142			
Analysis 1	Name: TPH-GRO - Waters			
	ber: 05083A08D			
Daten num	Trifluorotoluene-F			
	TITITUOTOCOTUENE-F			
4486116	114			
Blank	114			
LCS	116			
LCSD	115			
MS	119			
Limits:	70-142			
Analysis 1	Name: BTEX+MTBE by 8260B			
Batch numl	per: Z050812AA			
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzen
4486112	95	88	94	93
Blank	97	89	102	91
LCS	96	90	95	95
MS	97	90	95	95
MSD	97	87	93	95
Limits:	81-120	82-112	85-112	83-113
	Name: BTEX+5 Oxygenates+ED	C+EDB+ETOH		
Batch numb	per: Z050831AA			
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzen
				0.0
4486113	98	92	94	92
4486114	96	92	92	99
4486115	96	93	8.9	90
4486116	99	95	91	86
4486117	97	92	91	87
Blank	84	90	92	87
LCS	94	94	85	92
MS	95	89	90	90
MSD	95	91	92	91
1500.00	2.80088		The state of the s	
Limits:	81-120	82-112	85-112	83-113

*- Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The background result was more than four times the spike added.

Group Number: 936086

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax:717-656-2681 * www.lancasterlabs.com

Page 4 of 4

Quality Control Summary

Client Name: ChevronTexaco c/o Cambria

Reported: 03/29/05 at 01:34 PM

Surrogate Quality Control

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The background result was more than four times the spike added.

Chevron California Region Analysis Request/Chain of Custody

03/805-07 Acct. #: 10904 | For Languager Laboratories use only Sample #: 4486112-17

Camb	ria MTI Proj	ect # 61H-1	1669								A	nah	ses R	quested	7
Facility #: SS#9-4737 G-R#385262 Glob				П	Matri	ĸ					F	res	ervatio	n Codes	Preservative Codes
Site Addres 90 MADERA BLVD., CORTE M	ADERA, CA		_	L				H	H			H			H = HCl T = Thiosulfate N = HNO ₃ B = NaOH S = H ₂ SO ₄ O = Other
Consultant/Office.G-R, Inc., 6747 Sierra Cour Consultant Prj. Mgr.Deanna L. Harding (dea Consultant Phone #925-551-7555 Sampler: Aristina Kuly		om) 51-7899	Grab Grab Composite	-	Water Dotable	Oil D Air	Total Number of Containers	BTEX + MTBE 8260 \ 2 8021 □	TPH 8015 MOD GRO	TPH 8015 MOD DRO-SEIlica Gel Cleanup	8260 full scan	& Oxygenate (824 0)	Lead 7420 🗆 7421 🗀		J value reporting needed Must meet lowest detection limits possible for 8260 compounds 8021 MTBE Confirmation Confirm highest hit by 8260 Confirm all hits by 8260 Run oxy s on highest hit
QA	348-05			T	W		2	X	X						Comments / Remarks
mw-1 mw-2 mw-3 mw-4 Acmw-1		0900	X X X X		V		888888	XXXXX	XXXXX		Z/V	XXXXX			TPHDRO W SIGE Needed MM 3 28 05
Turnaround Time Requested (TAT) (please circle of D. TAT) 72 hour 48 hour 44 day 5 day Data Package Options (please circle if required) QC Summary Type I — Full Type VI (Raw Data) WIP (RWQCB) Disk		Relinquis Relinquis	thed by	K. Z.		Ot	ther_	49		3	Dete Bate	05/	Time 3 50 Time 15 3 6	Received by: Received by: Received by: Custody Seals Intact	Dete Time Time Time Time Dete Time Dete Time Time Time Time Time Time Time Time

Explanation of Symbols and Abbreviations

Inorganic Qualifiers

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	Ib.	pound(s)
g	gram(s)	kg	kilogram(s)
ug	microgram(s)	mg	milligram(s)
ml	milliliter(s)	Ĭ	liter(s)
m3	cubic meter(s)	ul	microliter(s)

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- Dry weight basis

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

U.S. EPA CLP Data Qualifiers:

Organic Qualifiers

Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" td="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	E	Estimated due to interference
C	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
E	Concentration exceeds the calibration range of	S	Method of standard additions (MSA) used
	the instrument		for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
P	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
z.Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

3

ATTACHMENT E

Standard Field Procedures for Borings and Wells

STANDARD FIELD PROCEDURES FOR MONITORING WELL INSTALLATION

This document presents standard field methods for drilling and sampling soil borings and installing, developing and sampling groundwater monitoring wells. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

DRILLING AND SAMPLING

Objectives

Soil samples are collected to characterize subsurface lithology, assess whether the soils exhibit obvious hydrocarbon or other compound vapor or staining, and to collect samples for analysis at a State-certified laboratory. All borings are logged using the Unified Soil Classification System by a trained geologist working under the supervision of a California Professional Geologist (PG).

Soil Boring and Sampling

Soil borings are typically drilled using hollow-stem augers or direct-push technologies such as the Geoprobe[®]. Prior to drilling, the first 8 feet of the boring are cleared using an air or water knife and vacuum extraction. This minimizes the potential for impacting utilities.

Soil samples are collected at least every five feet to characterize the subsurface sediments and for possible chemical analysis. Additional soil samples are collected near the water table and at lithologic changes. Samples are collected using lined split-barrel or equivalent samplers driven into undisturbed sediments at the bottom of the borehole.

Drilling and sampling equipment is steam-cleaned prior to drilling and between borings to prevent cross-contamination. Sampling equipment is washed between samples with trisodium phosphate or an equivalent EPA-approved detergent.

Sample Analysis

Sampling tubes chosen for analysis are trimmed of excess soil and capped with Teflon tape and plastic end caps. Soil samples are labeled and stored at or below 4° C on either crushed or dry ice, depending upon local regulations. Samples are transported under chain-of-custody to a Statecertified analytic laboratory.

Field Screening

One of the remaining tubes is partially emptied leaving about one-third of the soil in the tube. The tube is capped with plastic end caps and set aside to allow hydrocarbons to volatilize from the soil. After ten to fifteen minutes, a portable volatile vapor analyzer measures volatile hydrocarbon vapor concentrations in the tube headspace, extracting the vapor through a slit in the cap. Volatile vapor analyzer measurements are used along with the field observations, odors, stratigraphy and groundwater depth to select soil samples for analysis.

Water Sampling

Water samples, if they are collected from the boring, are either collected using a driven Hydropunch® type sampler or are collected from the open borehole using bailers. The groundwater samples are decanted into the appropriate containers supplied by the analytical laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory. Laboratory-supplied trip blanks accompany the samples and are analyzed to check for cross-contamination. An equipment blank may be analyzed if non-dedicated sampling equipment is used.

MONITORING WELL INSTALLATION, DEVELOPMENT AND SAMPLING

Well Construction and Surveying

Groundwater monitoring wells are installed to monitor groundwater quality and determine the groundwater elevation, flow direction and gradient. Well depths and screen lengths are based on groundwater depth, occurrence of hydrocarbons or other compounds in the borehole, stratigraphy and State and local regulatory guidelines. Well screens typically extend 10 to 15 feet below and 5 feet above the static water level at the time of drilling. However, the well screen will generally not extend into or through a clay layer that is at least three feet thick.

Well casing and screen are flush-threaded, Schedule 40 PVC. Screen slot size varies according to the sediments screened, but slots are generally 0.010 or 0.020 inches wide. A rinsed and graded sand occupies the annular space between the boring and the well screen to about one to two feet above the well screen. A two foot thick hydrated bentonite seal separates the sand from the overlying sanitary surface seal composed of Portland type I,II cement.

Well-heads are secured by locking well-caps inside traffic-rated vaults finished flush with the ground surface. A stovepipe may be installed between the well-head and the vault cap for additional security.

The well top-of-casing elevation is surveyed with respect to mean sea level and the well is surveyed for horizontal location with respect to an onsite or nearby offsite landmark.

Well Development

Wells are generally developed using a combination of groundwater surging and extraction. Surging agitates the groundwater and dislodges fine sediments from the sand pack. After about ten minutes of surging, groundwater is extracted from the well using bailing, pumping and/or reverse air-lifting through an eductor pipe to remove the sediments from the well. Surging and extraction continue until at least ten well-casing volumes of groundwater are extracted and the sediment volume in the groundwater is negligible. This process usually occurs prior to installing the sanitary surface seal to ensure sand pack stabilization. If development occurs after surface seal installation, then development occurs 24 to 72 hours after seal installation to ensure that the Portland cement has set up correctly.

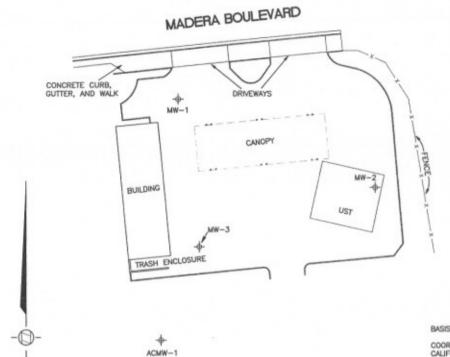
All equipment is steam-cleaned prior to use and air used for air-lifting is filtered to prevent oil entrained in the compressed air from entering the well. Wells that are developed using air-lift evacuation are not sampled until at least 24 hours after they are developed.

Groundwater Sampling

Depending on local regulatory guidelines, three to four well-casing volumes of groundwater are purged prior to sampling. Purging continues until groundwater pH, conductivity, and temperature have stabilized. Groundwater samples are collected using bailers or pumps and are decanted into the appropriate containers supplied by the analytical laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory. Laboratory-supplied trip blanks accompany the samples and are analyzed to check for cross-contamination. An equipment blank may be analyzed if non-dedicated sampling equipment is used.

Waste Handling and Disposal

Soil cuttings from drilling activities are usually stockpiled onsite and covered by plastic sheeting. At least three individual soil samples are collected from the stockpiles and composited at the analytical laboratory. The composite sample is analyzed for the same constituents analyzed in the borehole samples in addition to any analytes required by the receiving disposal facility. Soil cuttings are transported by licensed waste haulers and disposed in secure, licensed facilities based on the composite analytic results.


Groundwater removed during development and sampling is typically stored onsite in sealed 55-gallon drums. Each drum is labeled with the drum number, date of generation, suspected contents, generator identification and consultant contact. Upon receipt of analytic results, the water is either pumped out using a vacuum truck for transport to a licensed waste treatment/disposal facility or the individual drums are picked up and transported to the waste facility where the drum contents are removed and appropriately disposed.

N:\Procedures & SOPs\Monitoring Well Installation with Air Knife.doc

ATTACHMENT F

Well Survey Data

Monitoring Well Exhibit Prepared For: Cambria Environmental

DESCRIPTION	NORTHING	EASTING	ELEV (PVC)	ELEV (BOX)
MW-1	2167238.5	5980083.1	5.39	5.97
MW-2	2167181.5	5980211.4	4.60	5.76
MW-3	2167143.2	5980096.9	6.04	6.46
MW-4	2167020.0	5980178.5	3.41	3.68
ACMW-1	2167082.1	5980072.1	4.14	4.46

DESCRIPTION	LATITUDE	LONGINTUDE	
MW-1	37.9296584	-122.5166051	
MW-2	37.9295096	-122.5161561	
MW-3	37.9293974	-122.5165501	
MW-4	37.9290640	-122.5162582	
ACMW-1	37.9292284	-122.5166317	

BASIS OF COORDINATES AND ELEVATIONS:

COORDINATES ARE CALIFORNIA STATE PLANE ZONE 3 COORDINATES FROM GPS OBSERVATIONS USING UNIVERSITY OF CALIFORNIA BAY AREA DEFORMATION CORS STATION OBSERVATION FILES AND BASED ON THE CALIFORNIA SPATIAL REFERENCE CENTER DATUM, REFERENCE EPOCH 2000.35.

COORDINATE DATUM IS NAD 83(1986).

DATUM ELLIPSOID IS GRSBO.

REFERENCE GEOID IS NGS99.

CORS STATIONS USED WERE UCD1 AND DIAB.

VERTICAL DATUM IS NAVD 88 FROM GPS OBSERVATIONS.

Chevron Station 9-4737 90 Madera Boulevard Corte Madera Marin County California

MW-4

1450 Harbor Blvd. Ste. D West Sacramento California 95691 (916) 372-8124 jeff@morrowsurveying.com

Scole: 1* = 40' Sheet 1 of 1 Revised: Field Book: MW-16 Dwg. No. 0857-038 CT

Date: 3-29-05